

Identification of Invasive Alien Species using DNA barcodes

Royal Belgian Institute of Natural Sciences Rue Vautier 29 1000 Brussels, Belgium +32 (0)2 627 41 23 Royal Museum for Central Africa Leuvensesteenweg 13, 3080 Tervuren, Belgium +32 (0)2 769 58 54

General introduction to this factsheet

The Barcoding Facility for Organisms and Tissues of Policy Concern (BopCo) provides an expertise forum to facilitate the identification of biological samples of policy concern in Belgium and Europe. BopCo is funded by the Belgian Science Policy Office (Belspo).

Non-native species which are being introduced into Europe, whether by accident or deliberately, can be of policy concern since some of them can reproduce and disperse rapidly in a new territory, establish viable populations and even outcompete native species. As a consequence of their presence, natural and managed ecosystems can be disrupted, crops and livestock affected, and vector-borne diseases or parasites might be introduced, impacting human health and socio-economic activities. Non-native species causing such adverse effects are called Invasive Alien Species (IAS). In order to protect native biodiversity and ecosystems, and to mitigate the potential impact on human health and socio-economic activities, the issue of IAS is tackled in Europe by EU Regulation 1143/2014 of the European Parliament and Council. The IAS Regulation provides for a set of measures to be taken across all member states. The list of *Invasive Alien Species of Union Concern* is regularly updated. However, to implement the proposed actions, methods for accurate species identification are required when suspicious biological material is encountered.

Because morphology-based species identifications are not always possible (e.g. cryptic species, trace material, early life-stages), the purpose of the present work is to investigate and evaluate the usefulness of DNA sequence data to identify each of the IAS included in the EU Regulation. The results are presented as factsheets (one per IAS) compiled using publicly available DNA sequence data and information aggregated from various sources. Each factsheet consists of two major parts: (i) a short introduction to the specific IAS, with information on its taxonomy and current occurrence/distribution in Europe, (ii) an investigation with respect to the usefulness of publicly available DNA sequences to identify this IAS using DNA barcoding to the taxonomic level stated in the EU list. For further information about the reasoning behind the applied approach and details on the materials and methods utilised, please see below and Smitz et al. [1].

More info about BopCo on https://bopco.be or contact us via bopco@naturalsciences.be.

More info on the EU Regulation on https://ec.europa.eu/environment/nature/invasivealien/index en.htm.

Limnoperna fortunei

(Dunker, 1857)

Common names:

English: golden mussel French: moule dorée German: Goldene Muschel Dutch: gouden mossel

Last update: November 2023

General information on Limnoperna fortunei Classification Kingdom Phylum Class/Clade Order Family Genus Animalia Mollusca Bivalvia Mytilida Mytilidae Limnoperna

Species in the same genus: $N = 4^{-2.3}$

Note: We follow the classification as presented in MolluscaBase ² which considers the genus *Limnoperna* as part of the subfamily Arcuatulinae based on the most recent study about Mytilidae by Tan *et al.* ³.

Infra-species level: N = 0 4

Note: *Limnoperna fortunei kikuchii* is a former subspecies that is now regarded as a separate species, viz. *Xenostrobus securis* (Lamarck, 1819).

Native range: 5

China and south-east Asia.

Invasive range: 5-9

Europe (geographical):

To our knowledge, the species has not yet been reported in Europe.

For more detailed locality information and the most recent distribution updates, please visit:

https://easin.jrc.ec.europa.eu/spexplorer/species/factsheet/R20060

https://www.gbif.org/species/5855350

https://www.health.belgium.be/fr/animaux-et-vegetaux/biodiversite/especes-exotiques-envahissantes/liste-europeenne-des-especes

Outside Europe (geographical):

Argentina, Bolivia, Brazil, Hong Kong, Japan, Paraguay, Taiwan and Uruguay.

Morphology, biology, invasion, negative effects and remedies

For more information on Limnoperna fortunei please see the references and online information listed at the end of this document.

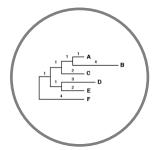
Species identification based on DNA barcodes

Introduction

DNA barcoding is a species identification method that uses a short genetic sequence (DNA barcode) to compare an unknown sample to a database of reference sequences with known species affiliations. The underlying rationale is that the divergence of nucleotide sequences among different species is larger than the nucleotide divergence between sequences within a species. DNA barcoding can facilitate the identification of IAS samples, especially when morphological characteristics are absent or useless. However, to assure correct species identifications, reference libraries need to include a sufficiently large number of sequences of (i) the IAS under investigation to assess the intraspecific genetic divergence, (ii) the closely related species to evaluate the interspecific genetic divergence, and (iii) the different geographical areas covering the distribution range (native and invasive) of the IAS to detect potential population structure or local hybrids.

In this context, BopCo evaluated the inclusion of the IAS and their close relatives in both publicly available reference libraries BOLD (www.boldsystems.org/) and GenBank (www.ncbi.nlm.nih.gov/nuccore/) to estimate the reliability with which a species identification can be obtained using DNA barcoding.


Material and Methods 1


Download all sequence data available for the genus

Filtering the data and selecting 'promising' markers

Aligning and trimming of the sequences

Building Neighbour-Joining tree with Bootstrap support

Conclusion

Based on the present evaluation of the available sequence data, COI is the most reliable DNA markers for the identification of *Limnoperna fortunei*. To allow for a better evaluation of the performance of this marker for species identification, additional sequences of the missing *Limnoperna* species should be added.

Discussion

The genus *Limnoperna* comprises only four species, of which only *Limnoperna fortunei* is commonly found in online DNA reference databases. Therefore, DNA markers for which *Limnoperna fortunei* sequences were available, were downloaded from Genbank and BOLD for all represented species of the Clade A designated by Morton *et al.* ¹⁰, equivalent to the M1 Clade of Tan *et al.* ³, i.e. the subfamilies Arcuatulinae, Bathymodiolinae, Lithophaginae, Modiolinae, Septiferinae and Xenostrobinae. Two DNA markers were evaluated (Table 1).

In the NJ-tree based on the marker **COI**, *L. fortunei* forms two supported clusters with maximum support. In addition, the three genera of the subfamily Arcuatulinae are represented in the COI dataset (Table 2). COI therefore seems reliable to identify *L. fortunei* from other Arcuatulinae species.

For marker **H3**, only four sequences for *L. fortunei* were obtained from one location, therefore the intraspecific genetic variation of *L. fortunei* may be too poorly represented to assess the ability of H3 to identify *L. fortunei*.

For **12S**, **16S** and **ITS2** only a few sequences are available and/or the marker shows little genetic variation among the different species. Therefore it is currently impossible to assess the ability of these markers to identify *L. fortunei*.

Table 1: Overview of the encountered issues concerning the DNA-based identification of the IAS ¹: (1) Insufficient publicly available DNA sequences of the IAS to capture the intra-species divergence; (2) Poor geographical coverage of the IAS sequences (native or invasive range missing); (3) The IAS sequences do not form supported clusters; (4) Potential misidentification of a specimen which influences the clustering of the IAS sequences; and (5) Not all species of the genus are represented in the final NJ-tree. An 'X' indicates that the issue was encountered.

Markers analysed	1	2	3	4	5
COI					Х
Н3	X	Х			Х

Table 2: Publicly available sequences downloaded (November 2023) from BOLD and GenBank (including sequences extracted from mitochondrial genomes) which were withheld as reliable and informative in the final alignment that was used for building the NJ-trees. The species names follow ^{2,10,11}, An 'X' indicates that at least one sequence was used in the final alignment.

Genera in subfamily	COI	Н3
Subfamily Arcuatulinae		
Limnoperna bogani		
Limnoperna fortunei	X	X
Limnoperna ngocnai		
Limnoperna siamensis	X	X
Subfamily Bathymodiolinae		
Adipicola (9)	X	X
Bathymodiolus (28)	X	X
Benthomodiolus (4)	X	
Gigantidas (11)	X	X
Idas (16)	X	X
Nypamodiolus (4)	X	X
Tamu (1)	X	X
Terua (2)	X	X
Vulcanidas (2)		X
Subfamily Lithophaginae		
Adula (7)	X	
Botula (7)	X	
Fungiacava (1)		
Leisolenus (44)	X	X
Lithophaga (10)	X	X
Zelithopaga (1)		
Subfamily Modiolinae		
Arenifodiens (1)		
Jolya (4)		
Lioberus (4)	X	
Modiolatus (10)		
Modiolula (2)		
Modiolus (40)	X	X
Stavelia (1)		
Subfamily Septiferinae		
Ciboticola (2)	X	
Septifer (7)	X	
Sinomytilus (3)	X	X
Trichomya (2)	X	
Subfamily Xenostrobinae.		
Vignadula (3)	X	X
Xenostrobus (8)	X	X
TOTAL species	22/32	16/32

For a more elaborate discussion of the available databases, the sequence selection process, the outcome of the NJ-tree analyses, the usefulness of the investigated DNA sequences for species identification, as well as information on how to send samples for analyses please contact BopCo directly.

References and online information

Online information

Factsheet NVWA Limnoperna fortunei (NL)

Picture credits

Page 1: Limnoperna fortunei By Boltovskoy [CC BY-SA 4.0]

Page 2 (up): Limnoperna_fortunei_2_By Philippe Maestrati [CC BY 4.0]

Page 2 (down): Limnoperna_fortunei_By Philippe Maestrati [CC BY 4.0]

References

- 1. Smitz N, Gombeer S, Meganck K, Vanderheyden A, Van Bourgonie YR, Backeljau T, De Meyer M. Identifying IAS based on DNA barcoding using currently available sequence data: details on applied material and methods. *BopCo*. Published online 2019. Accessed August 25, 2023. https://bopco.be/output/iasfactsheets
- 2. MolluscaBase. *Limnoperna* Rochebrune, 1882. MolluscaBase. Published December 6, 2023. Accessed December 6, 2023. https://www.molluscabase.org/aphia.php?p=taxdetails&id=492083
- 3. Tan KS, Tan SHM, Sanpanich K, Duangdee T, Ambarwati R. A new lineage of fresh- and brackish-water mussels (Bivalvia, Mytilidae) from Southeast Asia. *Zoologica Scripta* 2023;52(3):298-313. doi:10.1111/zsc.12585
- 4. MolluscaBase. *Xenostrobus securis* (Lamarck, 1819). MolluscaBase. Published 2023. Accessed December 6, 2023. https://www.molluscabase.org/aphia.php?p=taxdetails&id=140485
- 5. Darrigan G. *Limnoperna fortunei* (golden mussel). CABI Invasive Species Compendium. doi: https://doi.org/10.1079/cabicompendium.107775
- 6. De Oliveira MD, Takeda AM, De Barros LF, Barbosa DS, De Resende EK. Invasion by *Limnoperna fortunei* (Dunker, 1857) (Bivalvia, Mytilidae) of the Pantanal Wetland, Brazil. *Biol Invasions*. 2006;8(1):97-104. doi:10.1007/s10530-005-0331-0
- 7. Oliveira MD, Campos MCS, Paolucci E, Mansur MCD, Hamilton SK. Colonization and Spread of *Limnoperna fortunei* in South America. *Limnoperna fortunei*: The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel. Published online 2015:333-335. doi:10.1007/978-3-319-13494-9
- 8. Tien-hsi T, Jenn-yü P, Kou-chin H. The Recovery of the Fouling Clam, *Limnoperna fortunei* from Taiwan. *bulletin of Malacology Republic of China*. 1987;13:97-100.
- 9. Kuroda T. A catalogue of molluscan shells from Taiwan (Formosa), with descriptions of new species. *Memoirs of the Faculty of Science and Agriculture, Taihoku Imperial University Formosa, Japan.* 1941;22(2):65-216.
- 10. Morton B, Leung PTY, Wei J, Lee GY. Phylogenetic relationships of Asian freshwater Mytiloidea (Bivalvia): a morphological and genetic comparison of *Sinomytilus harmandi, Limnoperna fortunei* and *Septifer bilocularis*. *Molluscan Res*. 2020;40(2):120-129. doi:10.1080/13235818.2020.1735984
- 11. MolluscaBase. Mytilidae Rafinesque, 1815. MolluscaBase. Published 2023. Accessed December 6, 2023. https://www.molluscabase.org/aphia.php?p=taxdetails&id=211

To cite this factsheet, please use

Barcoding Facility for Organisms and Tissues of Policy Concern, 2019. Factsheet on *Limnoperna fortunei*; November 2023. In: Identification of Invasive Alien Species using DNA barcodes. BopCo, Belgium. Available from: https://bopco.be/output/iasfactsheets, accessed on DD-MM-YYYY.

DISCLAIMER: The information represented in this factsheet has been compiled from many different sources. Every reasonable effort has been made to ensure that the material presented is accurate and reflects the current (see date last update) scientific knowledge. However, recent changes in e.g. taxonomy and distribution, or the publication of additional reference sequences may not be implemented. The views which are expressed in the "Conclusion" are those of the author(s) and have not been peerreviewed. BopCo does not guarantee the accuracy of the data included in this factsheet. The content of the factsheet is for information only and is not intended as legal advice. BopCo may not be held responsible for the use which may be made of the information contained therein. If you should notice any issues considering the content of this factsheet, or if you would like to contribute any additional information to it, please contact us through bopco@naturalsciences.be.

